Conrad: gene prediction using conditional random fields.

نویسندگان

  • David DeCaprio
  • Jade P Vinson
  • Matthew D Pearson
  • Philip Montgomery
  • Matthew Doherty
  • James E Galagan
چکیده

We present Conrad, the first comparative gene predictor based on semi-Markov conditional random fields (SMCRFs). Unlike the best standalone gene predictors, which are based on generalized hidden Markov models (GHMMs) and trained by maximum likelihood, Conrad is discriminatively trained to maximize annotation accuracy. In addition, unlike the best annotation pipelines, which rely on heuristic and ad hoc decision rules to combine standalone gene predictors with additional information such as ESTs and protein homology, Conrad encodes all sources of information as features and treats all features equally in the training and inference algorithms. Conrad outperforms the best standalone gene predictors in cross-validation and whole chromosome testing on two fungi with vastly different gene structures. The performance improvement arises from the SMCRF's discriminative training methods and their ability to easily incorporate diverse types of information by encoding them as feature functions. On Cryptococcus neoformans, configuring Conrad to reproduce the predictions of a two-species phylo-GHMM closely matches the performance of Twinscan. Enabling discriminative training increases performance, and adding new feature functions further increases performance, achieving a level of accuracy that is unprecedented for this organism. Similar results are obtained on Aspergillus nidulans comparing Conrad versus Fgenesh. SMCRFs are a promising framework for gene prediction because of their highly modular nature, simplifying the process of designing and testing potential indicators of gene structure. Conrad's implementation of SMCRFs advances the state of the art in gene prediction in fungi and provides a robust platform for both current application and future research.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Gene Prediction using Conditional Random Fields

Computational gene prediction using generative models has reached a plateau, with several groups converging to a generalized hidden Markov model (GHMM) incorporating phylogenetic models of nucleotide sequence evolution. Further improvements in gene calling accuracy are likely to come through new methods that incorporate additional data, both comparative and species specific. Conditional Random ...

متن کامل

RNA secondary structure prediction using conditional random fields model

Non-coding RNAs (ncRNAs) have important biological functions in living cells dependent on their conserved secondary structures. Here, we focus on computational RNA secondary structure prediction by exploring primary sequences and complementary base pair interactions using the Conditional Random Fields (CRFs) model, which treats RNA prediction as a sequence labelling problem. Proposing suitable ...

متن کامل

A CRF Sequence Labeling Approach to Chinese Punctuation Prediction

This paper presents a conditional random fields based labeling approach to Chinese punctuation prediction. To this end, we first reformulate Chinese punctuation prediction as a multiple-pass labeling task on a sequence of words, and then explore various features from three linguistic levels, namely words, phrase and functional chunks for punctuation prediction under the framework of conditional...

متن کامل

Gene Prediction with Conditional Random Fields

Given a sequence of DNA nucleotide bases, the task of gene prediction is to find subsequences of bases that encode proteins. Reasonable performance on this task has been achieved using generatively trained sequence models, such as hidden Markov models. We propose instead the use of a discriminitively trained sequence model, the conditional random field (CRF). CRFs can naturally incorporate arbi...

متن کامل

Punctuation Prediction using Linear Chain Conditional Random Fields

We investigate the task of punctuation prediction in English sentences without prosodic information. In our approach, stochastic gradient ascent (SGA) is used to maximize log conditional likelihood when learning the parameters of linear-chain conditional random fields. For SGA, two different approximation techniques, namely Collins perceptron and contrastive divergence, are used to estimate the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genome research

دوره 17 9  شماره 

صفحات  -

تاریخ انتشار 2007